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Abstract. Quantum spin-1 chains may develop massless phases in presence of Ising-like and single-ion
anisotropies. We have studied c = 1 critical phases by means of both analytical techniques, including a
mapping of the lattice Hamiltonian onto an O(2) NLσM, and a multi-target DMRG algorithm which allows
for accurate calculation of excited states. We find excellent quantitative agreement with the theoretical
predictions and conclude that a pure Gaussian model, without any orbifold construction, describes correctly
the low-energy physics of these critical phases. This combined analysis indicates that the multicritical point
at large single-ion anisotropy does not belong to the same universality class as the Takhtajan-Babujian
Hamiltonian as claimed in the past. A link between string-order correlation functions and twisting vertex
operators, along the c = 1 line that ends at this point, is also suggested.

PACS. 75.40.-s Critical-point effects, specific heats, short-range order – 75.10.Jm Quantized spin models
– 02.70.-c Computational techniques

1 Introduction

One-dimensional quantum spin systems have been exten-
sively studied, since when [1], twenty years ago, Haldane
argued that half-integer spin Heisenberg antiferromag-
netic (AF) chains have no spin gap and are quantum crit-
ical, while integer spin chains are in the so-called Haldane
gapped phase and exhibit correlation functions that decay
exponentially with a finite correlation length. This sce-
nario has then been confirmed both numerically [2] and
experimentally [3].

We will consider here instead the following spin-1
Hamiltonian

H =
L∑

j=1

{
Sx

j Sx
j+1 + Sy

j Sy
j+1 + λSz

j Sz
j+1 + D(Sz

j )2
}

, (1)

which includes both an Ising-like and a single-ion
anisotropy term, with coefficients λ and D respectively.
In our calculations we impose periodic boundary condi-
tions (PBC): SL+1 ≡ S1. The inclusion of such terms is
relevant for a better understanding of experimental com-
pounds such as NENP and CsNiCl3 ([4] and references
therein).

Even if no exact solution of (1) is available (except
for spin-1/2 [5]), it is known from numerical studies [6]
that the inclusion of anisotropy terms can drive the sys-
tem away from the Haldane phase toward other phases,
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some of which are critical. A first theoretical study which
describes the critical properties of the model can be found
in [7] where, in general a spin-S chain is mapped onto a
system of 2S coupled spin-1/2 chains and analyzed with
bosonization techniques. More recently, a thorough ana-
lytical study of this model has been presented in the sem-
inal work [8], where the emphasis is put on the physical
properties of the massive phases.

The basic structure of the ground-state (GS) phase di-
agram of (1) appears to be well understood [9] and shows
a rich variety of phases. For high values of D the system
is in the large-D phase (D) consisting of a unique GS with
total magnetization Sz

tot = 0 separated by a gap from the
first excited states which lie in the sectors Sz

tot = ±1.
For large positive values of λ we have a twofold degener-
ate AF Ising-like phase (I). For not too large D and λ,
these two phases are separated by the Haldane phase (H),
which includes the isotropic O(3)-symmetric point. It is
characterized by non vanishing string-order parameters

Oα
S ≡ − lim

|j−k|→∞

〈
Sα

j exp

iπ
k−1∑

n=j+1

Sα
n

Sα
k

〉
, (2)

with α = {x, y, z}, first introduced by den Nijs and
Rommelse [10]. The first excited states are magnons at
the boundary of the Brillouin zone (BZ) carrying total
spin 1. These three massive phases can be distinguished
on the basis of a hidden Z2 × Z2 symmetry [8], which
is fully (in the Haldane phase) or partially (in the AF
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Ising-like phase) broken and whose order parameters are
given by equation (2). Also, the H-D and the H-I tran-
sition lines meet at a tricritical point, for D � λ � 3.
For larger values of the parameters, the Haldane phase
disappears and the line D � λ represents a first order
transition between the large-D and the Ising-like phases.
The remaining portion of the phase diagram, for λ < 0,
consists of a ferromagnetic GS for large |λ| and of two crit-
ical gapless phases, XY1 and XY2, different for having,
for finite-size systems, first excitations carrying Sz

tot = ±1
and Sz

tot = ±2 respectively.
In this paper, we will investigate the critical properties

of the Hamiltonian (1), and in particular we will concen-
trate on the Haldane/large-D (H-D) transition line and
on the XY2 massless phase, which turn out to be de-
scribed by c = 1 Conformal Field Theories (CFT). We will
tackle the problem both via analytical techniques, by find-
ing the CFT Lagrangian that describes the model in the
low-energy continuum limit, and via a multi-target Den-
sity Matrix Renormalization Group (DMRG) algorithm,
which allows for accurate calculation of excited states, to
be compared with the operator content of the CFT. We
will try also to clarify some controversial aspects discussed
in the literature.

2 The O(2) NLσM on the H-D transition line

The H-D transition line has been located numerically us-
ing the twisted boundary method in [9], where it has
also been pointed out that this represents a second order
phase transition described by a c = 1 CFT, in accordance
with [7]. Here we will describe a mapping of the lattice
model (1) along the H-D transition line onto an O(2) non-
linear σ-model (NLσM), that establishes a connection be-
tween the coupling constants D, λ of the discrete model
and those of the continuum Gaussian theory, namely the
spin-wave velocity v and the compactification radius. This
will allow us to make quantitative predictions.

The partition function for equation (1) in a path-
integral representation which makes use of spin coherent
states is given by [11]:

Z =
∫ [

DΩ̂
]
exp

is
∑

j

ω[Ω̂(j, τ)] −
∫ β

0

dτH(τ)

 ,

(3)
where the vector operator S(j) has been replaced by the
classical variable sΩ̂(j, τ) and ω[Ω̂(j, τ)] is the Berry
phase factor. In a semiclassical approach, we can ex-
pand sΩ̂(j, τ) about the classical solution which, for
D > λ − 1, is a planar state where the the unit vec-
tors Ω̂(j, τ) are Néel ordered in the xy-plane: Ω̂(j, τ) =
(cos(θ0+jπ), sin(θ0+jπ), 0). Hence we make the Haldane-
like ansatz:

Ω̂(j, τ) = (−1)jn̂(j, τ)

√
1 − l2(j, τ)

s2
+ ẑ

l(j, τ)
s

, (4)

where n̂(j, τ) = eiθ(j,τ) ∈ O(2)xy, ẑ is the unitary vec-
tor (0, 0, 1), and the fluctuation field l(j) is supposed to
be small. Expanding H(τ) up to quadratic terms in l(j)
and taking into account that the Berry phase is given by

is
∑

j

ω
[
Ω̂(j, τ)

]
= i

∑
j

∫ β

0

dτ l(j, τ) ∂τ θ(j, τ), (5)

we can now integrate out the fluctuating field. If we treat
then θ(j, τ) as a slow-varying variable, in the continuum
limit we end up with an effective O(2) NLσM in the field θ
that, after the rescaling Θ = θ/

√
g, can be rewritten in

the standard form:

LO(2) =
1
2

[
1
v
(∂τΘ)2 + v(∂xΘ)2

]
, (6)

where

g =
1
s

√
2 (1 + D + λ); v = s

√
2 (1 + D + λ) . (7)

This is a free Gaussian model [12], with a bosonic field Θ
compactified along a circle of radius 1/

√
g, which describes

a CFT with central charge c = 1 and with primary fields
(vertex operators) Vmn of scaling dimensions given by

d(th)
mn =

(
m2

4K
+ n2K

)
, m, n ∈ Z, (8)

where K = π/g and n and m are, respectively, the winding
numbers of Θ and its dual field, Φ. The latter turns out
to be compactified on a radius

√
g/2π. Moreover, it is not

difficult to see that m = Sz
tot, and hence it is a conserved

quantity of the model. Indeed, from the NLσM approach,
it follows that Sz(x) = l(x) = ∂τθ/vg so that

Sz
tot =

∫
dx

∂τΘ

v
√

g
=

∫
dx

∂xΦ√
g

= 2πm

√
g

2π

1√
g

= m. (9)

We recall that the values K = 1
2 , 1, 2 correspond to the so-

called [13] self-dual (SD), free Dirac (FD) and Berezinski-
Kosterlitz-Thosuless (BKT) points respectively. The scal-
ing dimensions (8) fix also the (non universal) critical
exponents of the correlation functions. For instance the
transverse spin-spin correlator decays according to:〈

S+(0)S−(x)
〉 ≈

〈
eiθ(0)e−iθ(x)

〉
∝ |x|−η, (10)

where η = 2d10 = g/2π.
Let us turn out to numerical results on the

Hamiltonian (1). We used a DMRG algorithm [14] for
finite systems, which had to be customized for the con-
vergence of not only the GS but also of several excited
state energies. More specifically, using the so-called thick-
restart Lanczos algorithm [15] we could target up to eight
states in a given sector of Sz

tot. Then, the density matrix is
built by averaging (with equal weights) the density matri-
ces associated with these states. Shortly, we will call this
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a multi-target DMRG. If necessary, the correlation func-
tions on the GS can be computed at the end of the finite-
size iterations (three in our cases). Since the DMRG is
known to be a good tool to investigate systems with a rel-
atively short correlation length, in order to study critical
phases we had to handle the DMRG data with finite-size
scaling (FSS) techniques. For the methodological aspects
of our DMRG procedure, and fitting of data, we refer to
a forthcoming paper [16].

First of all, it has been necessary to locate the H-D
transition line with great precision. Initially, we have fixed
some representative values of λ and let D vary across the
phase boundary by small increments. Then, we have re-
fined the location of the critical points Dc(λ) according
to FSS theory [17], using M = 400 DMRG states for chain
lengths L ranging from 10 to 50. The so obtained values
are very close to the ones calculated in reference [9] using
the twisted boundary conditions method and exact diag-
onalization limited to L = 16 sites.

It is well known [18] that in a CFT of a finite size
system of length L, the GS energy density depends on
the central charge and converges to its thermodynamic
limit as

E00

L
= e∞ − πcv

6L2
. (11)

The excited state energies are instead related to the
scaling dimensions (8) by

Emn − E00 =
2πv

L
(dmn + r + r̄) , (12)

where r and r̄ are positive integers that label the sec-
ondary states of a Verma module [19].

In a numerical approach, equation (11) is the start-
ing point to identify the correct CFT for a given critical
point: accurate calculations of E00 at various L give in
fact a best-fit of e∞ and of the product cv. Then one has
to select a number of excited states that become criti-
cal, i.e. degenerate with the GS, in the limit L → ∞. In
our problem the energies of the lowest states have been
calculated for different values of Sz

tot, which is the only
quantum number that can be fixed within the DMRG
algorithm. If the hypothesis of an underlining c = 1
Gaussian CFT is correct, all these energies should ap-
proach zero as straight lines as functions of 1/L, accord-
ing to equation (12) with dmn given in equation (8). For
the critical point (λ = 0.5, D = 0.65) this is shown in
Figure 1, where we have also indicated the (quasi-) de-
generacy of each state, as observed numerically for chains
of any length. The numerical data (points) of Figure 1
have been best-fitted with lines, whose slopes d(num) are
reported in the second column of Table 1.

In order to compare this spectrum with the theoreti-
cal predictions, it is necessary to find the values of v(num)

and K(num), that identify the Gaussian model from which
the observed levels originate. Equation (8) shows that, if
K > 1, the first excited state in the m = 0 sector should
be a doublet, corresponding to m = n = 0 and (r, r̄) =
(1, 0), (0, 1). Numerically, we do indeed find a doublet as
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Fig. 1. Energy differences, divided by 2π, plotted vs. 1/L at
the H-D transition point (λ = 0.5, D = 0.65). The legend on
the right indicates the Sz

tot quantum number and the order
of the targeted level within that sector, respectively. Points:
multi-target DMRG data (with M = 405 states).

Table 1. Spectrum of scaling dimensions at the point (λ =
0.5, D = 0.65) on the H-D line, obtained from the scaling plots
in Figure 1. Here (H-D line) m gives directly the eigenvalue
of Sz

tot. († Setting d(CF T ) = d(num) fixes the value of K(num) =
1.580).

d(CF T ) [×degeneracy] d(num) (m, n) (r, r̄)

0 [×1] (0,0) (0,0)

0.1582 [×2] † 0.1582 ± 0.0004 (±1,0) (0,0)

0.633 ± 0.002 [×2] 0.631 ± 0.001 (±2,0) (0,0)

1 [×2] 0.975 ± 0.005 (0,0) (1,0)

0.975 ± 0.005 (0,0) (0,1)

1.1582 ± 0.0004 [×4] 1.129 ± 0.006 (±1,0) (1,0)

1.129 ± 0.006 (±1,0) (0,1)

1.424 ± 0.004 [×2] 1.416 ± 0.003 (±3,0) (0,0)

1.580 ± 0.004 [×2] 1.546 ± 0.006 (0,1) (0,0)

1.547 ± 0.006 (0,−1) (0,0)

1.633 ± 0.002 [×4] 1.589 ± 0.007 (±2,0) (1,0)

1.589 ± 0.007 (±2,0) (0,1)

1.738 ± 0.004 [×4] 1.693 ± 0.008 (±1,1) (0,0)

1.693 ± 0.008 (±1,−1) (0,0)

first excited states in the Sz
tot = 0 sector, so that, using

equation (12) together with the data that come from the
fit on the GS energy of equation (11), we are able to obtain
v(num) = 2.197± 0.004 and c(num) = 1.008± 0.003, which
confirms the c = 1 theory behavior. Also, again from equa-
tion (8), it follows that the primary state (m = 1, n = 0)
should be the lowest one in the Sz

tot = 1 sector, with
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dimension d10 = (4K(num))−1. Our DMRG data yield
then K(num) = 1.580 ± 0.004 (1). For comparison, if we
plug the coordinates of the critical point (λ = 0.5, D =
0.65) in the formulae (7) for v and g of the O(2) NLσM
we obtain v(th) = g(th) = 2.07 and K(th) = 1.52, which
confirm the validity of our theoretical approach.

We can now use the so calculated v(num) and K(num)

to obtain the scaling dimensions d(CFT ) of the low-lying
levels as predicted by (12). These are listed in the first
column of Table 1 and are to be compared with the corre-
sponding numerical observations given in the second col-
umn. One can see that the differences lie within a 2%
percent. As a final check of the validity of the NLσM ap-
proach, we have computed directly the transverse spin-
spin correlation function, finding [16] that it decays alge-
braically with a critical exponent η(num) = 0.312± 0.002,
in very good agreement with the theoretical value η =
2d10 = 0.316, obtained from equation (10).

We would like to stress here that our numerical analy-
sis shows that the spectrum of the lattice Hamiltonian (1)
is completely exhausted by the levels of formula (12). This
is at variance with some claims that have appeared in
the literature in the past [10] according to which the H-D
transition line should be in the the same universality class
as the Ashkin-Teller (AT) model. Indeed it is known [20]
that the critical properties of the latter are described by
c = 1 orbifold CFT models [13] and hence should exhibit
K-independent scaling dimensions as well.

This result can be further checked by moving along
the critical line, varying K. From a theoretical point of
view this would correspond to acting by means of the
marginal operator (∂µθ)2. Consider for example the point
(λ = 1, D = 0.99), i.e. the D-induced transition point for
the isotropic Heisenberg model. Numerically we have esti-
mated v(num) = 2.588±0.006, c(num) = 0.997±0.003 and
K(num) = 1.328 ± 0.004. Again, we have a good confir-
mation of the O(2) NLσM predictions, corresponding to
v(th) = 2.45 and K(th) = 1.285. For this case, scaling plots
are displayed in Figure 2 and the scaling dimensions are
listed in Table 2. Also, the calculated value of the critical
exponent η(num) = 0.374 ± 0.003 matches the theoretical
value η = 2d10 = 0.377.

3 Towards the tricritical point

As just recalled, some time ago it has been conjectured [10]
that the H-D transition line is described by c = 1 orb-
ifold models. It has also been argued [7] that the tricrit-
ical point at which the c = 1 H-D transition line meets
the c = 1/2 H-I transition line is in the same universality
class as the integrable Takhtajan-Babujian (TB) Hamil-
tonian [21], whose low-lying excitations are described by
a SU(2)2 Wess-Zumino-Novikov-Witten (WZNW) model,

1 Throughout this paper the reported numerical errors orig-
inate from the best fits, with the exception of the velocities for
which the indicated errors represent the spread of the quadratic
extrapolations in 1/L of the secondaries of the GS.
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Fig. 2. Energy differences, divided by 2π, plotted vs. 1/L at
the H-D transition point (λ = 1, D = 0.99). The legend on
the right indicates the Sz

tot quantum number and the order
of the targeted level within that sector, respectively. Points:
multi-target DMRG data (with M = 405 states).

Table 2. Spectrum of scaling dimensions at the point (λ =
1, D = 0.99), obtained from the scaling plots in Figure 2. Recall
that m = Sz

tot. († Setting d(CF T ) = d(num) fixes the value of
K(num) = 1.328).

d(CF T ) [×degeneracy] d(num) (m, n) (r, r̄)

0 [×1] (0,0) (0,0)

0.1883 [×2] † 0.1883 ± 0.0005 (±1,0) (0,0)

0.753 ± 0.002 [×2] 0.750 ± 0.002 (±2,0) (0,0)

1 [×2] 0.970 ± 0.006 (0,0) (1,0)

0.966 ± 0.006 (0,0) (0,1)

1.1883 ± 0.0005 [×4] 1.148 ± 0.007 (±1,0) (1,0)

1.148 ± 0.007 (±1,0) (0,1)

1.328 ± 0.004 [×2] 1.284 ± 0.006 (0,1) (0,0)

1.289 ± 0.006 (0,−1) (0,0)

1.516 ± 0.005 [×4] 1.468 ± 0.007 (±1,1) (0,0)

1.468 ± 0.007 (±1,−1) (0,0)

1.695 ± 0.005 [×2] 1.679 ± 0.005 (±3,0) (0,0)

1.750 ± 0.02 [×4] 1.70 ± 0.01 (±2,0) (1,0)

1.70 ± 0.01 (±2,0) (0,1)

with central charge c = 3/2. Since this model is equivalent
to three free relativistic Majorana fermions [22], one can
conclude that the two critical lines must meet at the exact
point where the c = 1 operator content is described by a
bosonic theory with K = 1 [12]. If so, moving towards the
tricritical point on the H-D line one should find decreas-
ing values of K(num) approaching 1 from above. Previous
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studies on the λ-D phase diagram [9] give D � λ ∼ 3 as
a good estimate for the location of this point.

In the previous section, we have seen that our NLσM
predictions seem to be quite reliable, at least for D � 1.
However, the assumptions under which we have derived
the NLσM should be more and more valid as D (and λ)
increases, since the true GS of the Hamiltonian (1) is bet-
ter and better described by the planar configurations of
equation (4). Tweaking the values of the microscopic pa-
rameters, we find that, in our approach, the condition
K = 1 is fulfilled for λ ∼ 2. Thus our theoretical sce-
nario predicts that the portion of the H-D line for λ > 2
must correspond to K < 1. As we will see, our DMRG
data confirm this hypothesis and at the same time give an
estimate for K at the tricritical point which is very close
to the SD value 1/2.

To check this numerically, we have considered the crit-
ical point (λ = 2.59, D = 2.30). For such a point the
analysis of the spectrum is more complicated than before
because of two reasons. First, the H-D transition line is
now very close to the H-I line and we start seeing a super-
position of the two conformal spectra. However, the chosen
point not being exactly on the H-I transition line, from our
numerical data we are still able to trace and separate the
levels of the c = 1/2 theory. The price to be paid is that we
had to target up to eight excited states within the Sz

tot = 0
sector. Second, since we are moving towards the SD point,
we have to take into consideration that the operators V0±2,
with scaling dimension d0±2 = 4K, are becoming less and
less irrelevant (truly marginal for K = 1/2). Thus, in a
finite size system, we might expect [23] such operator to
induce some renormalization effects on the energies of the
model, which might be very large as we approach the SD
point, where they are logarithmic. Another subtle point
is the choice of the states from which the velocity is com-
puted. When K < 1 we have to remember that the doublet
with m = 0 and n = ±1 comes first than the doublet of
secondaries with (r, r̄) = (1, 0), (0, 1). Even if we have no
direct control on how the aforementioned finite-size cor-
rections act on this doublet, a quadratic extrapolation in
1/L yields v(num) = 3.70 ± 0.04, that seems to be quite
reliable in that it gives c(num) = 0.99±0.01. The theoreti-
cal value predicted by our NLσM mapping is v(th) = 3.43.
On the other hand, in the estimate of K(num), the prob-
lem can be circumvented by using the dimensions d0±1

instead of d10 as done before. In fact, the doublet with
m = 0 and n = ±1, which should be degenerate accord-
ing to (8), is found to be split. Following [23,24], we learn
that the renormalization effects on the energies of these
two states are equal but with opposite signs, so that the
correct value of the energy can be obtained by considering
their semisum. So doing, we get K(num) = 0.85±0.01, con-
firming that we have gone closer to the SD point beyond
the FD one.

Finally, we have considered the point (λ = 3.20, D =
2.90), which according to [9] corresponds to the location of
the tricritical point. Similarly with what we have argued
above, we find that the numerical spectrum can be inter-
preted as a superposition of a c = 1/2 and a c = 1 CFT’s.

Table 3. Velocity, central charge and GS energy density (er-
rors on the last figure in parenthesis) for the critical points
discussed in the text. The numbers are the outcome of DMRG
calculations with L = 16, 20, 24, 32, 48, 64 and M = 405 for the
first two lines and L = 16, 20, 24, 28, 32, 36, 40 and M = 400 for
the other cases. The last two columns contain, respectively, the
estimate of the K parameter of the effective c = 1 Gaussian
theory, according to the numerical procedure described in the
text and the critical exponent ν = 1/(2 − K).

[λ, Dc(λ)] v c e∞ K ν

(0.5, 0.65) 2.197 1.008 −0.908765(9) 1.580 2.38

(1.0, 0.99) 2.588 0.997 −0.859152(2) 1.328 1.49

(2.59, 2.30) 3.70 0.99 −0.675099(5) 0.85 0.870

(3.20, 2.90) 4.445 1.133 −0.59132(2) 0.526 0.678

The calculation of c is complicated by the fact that the
Ising transition is even closer, if not coincident. Using
the same method of the previous point, our best values
in this case are c(num) = 1.133 ± 0.006 and K(num) =
0.526 ± 0.007, having estimated v(num) = 4.445 ± 0.005
against v(th) = 3.77 from the expression of the NLσM. In-
terestingly enough, if we try to extract the Ising velocity
from the secondaries of the primary state with d = 1/8
we find the pretty close value vIsing = 4.35 ± 0.06.

In Table 3 we summarize the values of v and c for
all the four H-D critical points discussed above and we
list also the GS energy per site e∞ and the final estimate
of K. As anticipated, moving to the right on the H-D line
the value of K keeps on decreasing towards the SD point
where we speculate that this line meets the H-I one and a
first order transition line begins.

4 Away from the H-D critical line

So far, we have considered what happens when moving
along the c = 1 critical line in the direction of increas-
ing λ. When we instead move in the opposite direction,
the velocity v gets smaller and the compactification ra-
dius of Θ grows. In particular, when the H-D transition
line meets the λ = 0 axis, for D ∼= 0.4 [25], we reach a BKT
transition, for which K = 2. For λ < 0 a two-dimensional
critical region, corresponding to the XY1 phase, opens up.

To understand what happens in the XY1 region as well
as when we move away from the H-D line with λ > 0,
we need to consider all relevant operators, allowed by
the symmetries, that can be generated by renormaliza-
tion of the lattice Hamiltonian. In a Gaussian theory with
1/2 < K < 2, formula (8) shows that the most rele-
vant primary field not forbidden by the conservation of
the total magnetization along the z-axis corresponds to
(m = 0, n = ±1). It has scaling dimensions d0±1 = K and
it is given by the vertex operator cos (

√
4πKΦ).



470 The European Physical Journal B

After a dual transformation in equation (6) we find
that our model has to be described by the Lagrangian of
the sine-Gordon model

LSG =
1
2

[
1
v
(∂τΦ)2 + v(∂xΦ)2

]
+

vµ

a2
cos

(√
4πKΦ

)
.

(13)
Here, we assume that the coefficient µ goes to zero along
the H-D transition line. The precise determination of µ as
a function of λ and D would require an exact renormal-
ization procedure [7,26], which goes beyond the scope of
this paper. The relevant cosine term is thus responsible of
the opening of a gap as soon as we move away from the
H-D transition line. In passing, we point out that, once the
value of d0±1 is known, the relation ν = 1/(2−d0±1) yields
a much better estimate, as compared to the β-function
method [16], of the exponent that controls the opening
of the energy gap proportional to |D − Dc|ν . The values
computed with the former method are given in the last
column of Table 3.

The gap-generating term becomes marginal exactly at
the BKT point K = 2, (λ = 0, D � 0.4) [25], where the
H-D line “fans-out” [26] into the bidimensional critical re-
gion XY1. We argue that in this critical phase the effective
theory is the same as in equation (13), the only difference
being the irrelevance of the operator cos (

√
4πKΦ), with K

ranging from 2, at the BKT boundary lines, towards ∞
at the ferromagnetic transition. In order to support this
picture, we note that the NLσM approach predicts a crit-
ical stripe enclosed between D = −λ − 1 + π2/8 (where
K(th) = 2) and D = −λ − 1 (where K(th) = ∞), that
overlaps with the real XY1 region in a wide portion of
the diagram. As a numerical test, we have considered the
point (λ = −0.5, D = 0) where we expect K(th) = π
and v(th) = 1. Using the same DMRG procedure as above
(L up to 40 with M = 400), we find that the low-lying
spectrum is again described by a purely Gaussian CFT
with v(num) = 1.11535±0.00005, c(num) = 0.9997±0.0001
and K(num) = 3.086± 0.002.

To finish our discussion on the H-D transition, we
observe that the operator content of the microscopic
Hamiltonian (1) does not contain the so-called twisting
operator V0±1/2 = cos (

√
πKΦ) with scaling dimension

d0±1/2 = K/4. In general, this kind of operators is permit-
ted in CFT [24,27], in as much as they yield half-integer
conformal spin, and hence well-defined correlation func-
tions [12] decaying as power laws. Specifically, for V0±1/2

the exponent has to be ηS,z = 2d0±1/2 = K/2.
This relevant operator is forbidden here only because

of the PBC’s we have chosen and not from symmetry con-
siderations. Nonetheless, it is interesting to note that we
do find certain correlation functions that, both on ana-
lytical and numerical grounds, decay with the exponent
written above. Namely, we considered the longitudinal
string correlator (α = z in Eq. (2)) and extracted its
decaying exponent at the critical points of Table 3 by
means of a proper FSS analysis [16,17] on the DMRG
data with L = 32, 48, 64, 80, 100 and M = 300. We get
η
(num)
S,z = 0.804 ± 0.003 at (λ = 0.5, D = 0.65) and

η
(num)
S,z = 0.741 ± 0.002 at (λ = 1, D = 0.99), to be com-

pared with η
(CFT )
S,z = 0.790 and η

(CFT )
S,z = 0.664, respec-

tively. In addition, this preliminary identification is en-
forced by the continuum version of the string correlations
in the framework of the NLσM. In fact, one can start from
the local expression of Sz on the H-D line

Sz(x) =
∂xΦ√

g
+ κ(−)x/a cos

(
2
√

πKΦ
)

+ ... (14)

with κ a constant and a the lattice spacing. In the
same spirit as bosonization, the first uniform term comes
directly from equation (9). Since the Hamiltonian is
quadratic in Sz, the second staggered term would gen-
erate the first irrelevant cosine operator (allowed by sym-
metries) that one could put in equation (13) at criticality.
Now, independently of the scaling dimension of the expo-
nential string in equation (2), the derivatives that appear
as a consequence of substituting equation (14) into the
outer spins Sz

j and Sz
k raise the overall scaling dimension

by 1, and hence cannot be responsible for the numbers
above. So, the leading order is obtained by retaining only
the cosine term in the outer spin operators. Starting di-
rectly from the lattice formulation, it can be seen that the
alternating term (−)j cancels when combined with the
exponential of the string, in such a way that the sum in
equation (2) can be effectively taken only on the uniform
part (defined as the average of the neighboring spins in
the doubled lattice cell). So in the continuum limit we are
simply left with

∫
dx∂xΦ = Φ(x)−Φ(0). Summing up, we

expect that the asymptotically dominant contribution to
the string correlator comes from

Oz
S(x) ≈ 〈

0|S†(0)S(x)|0〉 , S(x) ≡ ei π√
g Φ(x) cos

(
2π√

g
Φ

)
,

(15)
and particularly from the terms exp (±i π√

gΦ), that have
the sought decay exponent ηS,z = K/2. Note that the
prefactor π in the string of equation (2) is crucial for this.

Along the same lines, if we move off-criticality
the first dominant term in equation (14) becomes
(−)x/a cos (

√
πKΦ) and, recalling that K = π/g, we see

that equation (15) acquires a constant term due to the
exponentials with opposite arguments. We suspect that
this is the mechanism according to which the string order
parameters become nonzero in the Haldane phase. Rigor-
ously speaking, one should compute the off-critical corre-
lators using the sine-Gordon action and the outcome is
expected to depend on the sign of µ. Here we can only
notice that, semiclassically, when µ > 0 the potential
has a minimum in Φ0 = 0 while when µ < 0 the min-
ima lie at Φ± = ±√

π/4K. The difference is that, in
the first case cos (

√
πKΦ0) 
= 0 while in the second one

cos (
√

πKΦ±) = cos(±π/2) = 0, which is the desired be-
havior. However, a systematization of these ideas is still
underway.
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5 The XY2 phase

We consider now the XY2 phase, which coincides with a
region of small negative λ and D � −2, getting narrower
as D decreases. For large negative values of D we can
resort to a perturbative study, outlined in the Appendix,
which shows that the model is mapped onto an effective
S =1/2 XXZ spin chain

Heff = J

L∑
i=1

(
S̃x

i S̃x
i+1 + S̃y

i S̃y
i+1 + ∆S̃z

i S̃z
i+1

)
, (16)

where J = 1/|D|, ∆ = 4λ|D| + 1 and S̃i are spin-1/2
operators (in particular Sz

j = 2S̃z
j ).

From the exact solution of the spin-1/2 XXZ
model [5], we can therefore argue that our Hamiltonian,
in the large |D| limit, has a narrow critical region for
−(2|D|)−1 < λ ≤ 0, with elementary excitations carry-
ing spin 1. For positive λ the system is in an AFM phase,
while for λ < −(2|D|)−1 it has a ferromagnetic GS. We
can conclude that, in the continuum limit, the system can
be mapped effectively onto a Gaussian model, where the
boson compactification radius and hence the critical ex-
ponents depend on ∆. Also, at every point of the λ-D pa-
rameter space there is a horizontal direction along which a
marginal operator renormalizes the parameter K, and an-
other direction (λ|D| = const., for D � −1) along which
the universality class does not change.

Inspired by the above theoretical results, we have per-
formed a multi-target DMRG calculation at the point
(λ = −0.05, D = −5), which in our mapping corresponds
to a S=1/2 XXZ model with ∆ = 0, described by a free
Dirac fermion with velocity v(th) = 1/|D| = 0.2. Con-
sistently with theoretical predictions, we have found that
only even spin sectors become gapless, while excitations
with odd values of Sz

tot remain massive in the thermody-
namic limit. From the scaling of the GS and of the first
doublet, we have obtained e∞ = −5.114607, v(num) =
0.20752± 0.00006 and c(num) = 1.01991± 0.00003. Keep-
ing in mind that here m has to be identified with twice the
eigenvalue of Sz

tot we extract K again from d10, now asso-
ciated with the first level in Sz

tot = 2. We find K(num) =
0.9976 ± 0.0004, clearly compatible with the hypothesis
of being at the FD point, as seen in Figure 3 from the
intersection of the dimensions d0±1 and d±20.

As for the spin-spin correlation functions, it turns
out that the transverse ones, which do not have a di-
rect identification in terms of spin-1/2 operators, have an
exponential decay. On the other hand, at the free Dirac
point the longitudinal spin-1 correlation function is sim-
ply 4〈S̃z

0 S̃z
j 〉 and should therefore decay as (1+(−1)j)/jηz ,

with ηz = 2 [12]. This alternating behavior is repro-
duced by DMRG calculations (L = 32, 48, 64, 80, 100 with
M = 300) that yield the value ηz = 2.06 ± 0.03.

6 Conclusions

In this paper we have studied the spin-1 AFM Heisenberg
chain with the inclusion of both Ising-like and single-ion
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Fig. 3. Scaling dimensions of the three most relevant pri-
mary operators, (m = ±1, n = 0), (m = 0, n = ±1) and
(m = ±2, n = 0) as functions of K. We have indicated the
three special values K = 1/2: SD, K = 1: FD; K = 2: BKT.
The vertical dot-dashed line indicate the value of K = 0.9976
corresponding to the point (λ = −0.05, D = −5) (in the XY2
phase) estimated through the first level d10 (as indicated by
the open circle). The dotted and dashed lines have the same
meaning for the points on the H-D line (λ = 1, D = 0.99) and
(λ = 0.5, D = 0.65) respectively. In each case, the three hori-
zontal lines mark the values of the direct numerical estimates
of the scaling dimensions.

anisotropy terms with the aim of investigating the critical
properties of this model. In particular we have examined
the massless phases that correspond to a c = 1 CFT.

Our analysis starts from an analytical approach, aimed
at the identification of the effective continuum field theory
that describes the low-energy sector of the lattice model.
We have found that all c = 1 phases are described by
a free Gaussian model (with no orbifold construction),
with continuously varying critical exponents. These re-
sults have been then checked numerically, with the use
of a multi-target DMRG algorithm, which allows for ac-
curate calculation of many excited states together with
string and ordinary correlation functions. The agreement
between the two methods is remarkable.

In particular, along the H-D transition line both
the NLσM predictions and the DMRG data indicate that
the Gaussian parameter K changes continuously from the
value K = 2 (corresponding to the BKT point) for λ = 0
to K = 1/2 (corresponding to the SD point) for the tricrit-
ical point where the H-D and the H-I transition lines meet.
The latter result is at variance with some claims [7,10]
according to which this point should be described by an
SU(2)2 WZWN model. Moving away from the H-D line, a
gap opens up due to the relevance of the cosine operator
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in equation (13). An analytical argument, supported by
numerical estimates of the decay exponents, that relates
the so-called twisting operator to the longitudinal string
order correlation function is also sketched. As far as
the XY1 phase is concerned, there are analytical and nu-
merical evidences that the effective CFT is again a Gaus-
sian model with K > 2. In this case the sine-Gordon op-
erator is irrelevant.

Finally, it is shown that, in the XY2 phase, the low-
energy physics of the spin-1 model is equivalent to a XXZ
spin-1/2 chain with an anisotropy parameter −1 < ∆ ≤ 1.

We would like to thank L. Campos-Venuti, G. Morandi, S.
Pasini and F. Ravanini for useful discussions. This work has
been in part supported by the TMR network EUCLID (con-
tract number: HPRN-CT-2002-00325).

Appendix: Large negative D

For convenience, we consider the Hamiltonian (1) sub-
tracting out a constant term DL. in order to study the
D → −∞ limit, keeping λ finite. At the zero order in
perturbation theory we simply have the Hamiltonian

H0 = −|D|
L∑

j=1

(
Sz

j

)2 + |D|L, (17)

whose GS has degeneracy 2L, corresponding to all the spin
configurations with Sz

j = ±1, i.e. not containing zero’s.
This degeneration is lifted by the perturbation part

H1 =
L∑

i=1

[
1
2
(
S+

i S−
i+1 + S−

i S+
i+1

)
+ λSz

i Sz
i+1

]
. (18)

We denote with P0 and P1 the projectors onto the
subspaces Z0 = {|s1, s2, · · · , sL〉 : ∀i, |si〉 
= |0〉} and
Z1 = {|s1, s2, · · · , sL〉 : ∃i, |si〉 = |0〉} respectively, so
that we can write:

H =
(

P0H1P0 P0H1P1

P1H1P0 P1(H0 + H1)P1

)
. (19)

We can now look for an effective Hamiltonian Heff de-
scribing the low energy sector by projecting the resolvent
operator G(E) onto the subspace Z0 [11]:

P0G(E)P0 = P0[E −H]−1P0 ≡ [
E −Heff(E)

]−1
. (20)

We have

Heff = P0H1P0 + P0H1P1

× {P1

[
E − (H0 + H1)

]
P1}−1P1H1P0 (21)

where we can consider the approximation in which E = 0
and expand to the second order in H1. Since the off-
diagonal part of H1 connects Z0 to Z1 creating a couple

of zeroes, at the leading order we find

Heff = P0H1P0 − 1
2|D|P0H1P1H1P0

=
L∑

j=1

[
λSz

j Sz
j+1 −

1
8|D|

(
S+

j S−
j+1 + S−

j S+
j+1

)2
]

.

(22)

This effective Hamiltonian is acting within Z0 where we
have only two local states per site. So, within this sub-
space, we get an identification of the local spin-1 opera-
tors Sα

j with spin-1/2 operators S̃α
j according to the fol-

lowing table.

Spin 1 Spin 1/2

Sz
j 2S̃z

j

S+
j S+

j 2S̃+
j

S−
j S−

j 2S̃−
j

S+
j S−

j 2
(

1
2 + S̃z

j

)
S−

j S+
j 2

(
1
2 − S̃z

j

)
In terms of the new operators, we obtain an effective

spin-1/2 XXZ model

Heff =
1
|D|

×
L∑

j=1

(
S̃x

j S̃x
j+1 + S̃y

j S̃y
j+1 + (4λ|D| + 1)S̃z

j S̃z
j+1

)
− L

4|D| ,

(23)

where the sign in front of the x-y terms has been changed
by means of the unitary transformation S̃x

j → (−)jS̃x
j ,

S̃y
j → (−)jS̃y

j .
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